Трансформаторы. Режимы работы
Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.
Режимы работы трансформатора
Существует пять характерных режимов работы трансформатора:
- Рабочий режим;
- Номинальный режим;
- Оптимальный режим;
- Режим холостого хода;
- Режим короткого замыкания;
Рабочий режим
Режим характеризуется следующими признаками:
- Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot{u}_1 ≈ \dot{u}_{1ном}\);
- Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot{i}_1 ≤ \dot{i}_1ном\).
В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.
Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.
Номинальный режим работы
Характерные признаки режима:
- Напряжение первичной обмотки равно номинальному \(\dot{u}_1 = \dot{u}_{1ном}\);
- Ток первичной обмотки равен номинальному \(\dot{i}_1 = \dot{i}_{1ном}\).
Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.
Оптимальный режим работы
Режим характеризуется условием:
\begin{equation} k_{нг} = \sqrt{P_{хх}\over P_{кз}} \end{equation}Где \(P_{хх}\) - потери холостого хода;
\(P_{кз}\) - потери короткого замыкания;
\(k_{нг}\) - коэффициент нагрузки трансформатора, определяемый по формуле:
Где \(P_2\) - ток нагрузки вторичной обмотки;
\(P_{2ном}\) - номинальный ток вторичной обмотки.
В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри "Трансформаторы. Оптимальный режим работы").
Режим холостого хода
Характерные признаки режима:
- Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки(1) трансформатора;
- К первичной обмотке приложено напряжение \(\dot{u}_{1хх} = \dot{u}_{1ном}\);
- Ток вторичной обмотки \(\dot{i}_2 ≈ 0\) (для трехфазного трансформатора - \(\dot{i}_{2ф} ≈ \dot{i}_{2л} ≈ 0\).
На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 - трехфазного двухобмоточных трансформаторов.
По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри "Опыт холостого хода трансформатора").
-
Примечание:
- Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_{Нном}\), равная отношению номинального напряжения обмотки \(U_{ном}\) к её номинальному току обмотки \(I_{ном}\)
Режим короткого замыкания
Режим короткого замыкания характеризуется:
- Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
- К первичной обмотке приложена такая величина напряжения \(\dot{u}_1\), что ток первичной обмотки равен её номинальному току \(\dot{i}_1 = \dot{i}_{1ном}\)
- Напряжение вторичной обмотки \(\dot{u}_2 = 0\) (для трехфазного трансформатора - \(\dot{u}_{2ф} = \dot{u}_{2л} = 0\).
Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 - для трехфазного двухобмоточных трансформаторов.
Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри "Опыт короткого замыкания трансформатора").
Список использованных источников
- Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов - Москва: Высшая школа, 1996 - 623 с.
- Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек - СПб.: Энергия, 1978 - 832 с.
- Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов - Москва: Энергоатомиздат, 1995 - 240 с.
- Автор: Электрик
- Опубликовано:
- Просмотров: 18.7k